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Abstract

In this study, the effect of mycorrhiza (Glomus intraradices N.C. Schenck & G.S. Sm.) inoculation 
on the micronutrient and macroelement uptakes in different organs of daffodil (Narcissus tazetta L.) 
grown under saline conditions is examined. For this purpose, Narcissus tazetta plant grown  
in the climate chamber was treated with sodium chloride (NaCl) at three different concentrations 
such as salt-free (S0), 34 mmol (S1) and 68 mmol (S2) in mediums with mycorrhiza (M+) and without 
mycorrhiza (M-). At the end of the experiment, the uptakes of sodium (Na), iron (Fe), manganese (Mn), 
zinc (Zn) and copper (Cu) uptakes in the bulb, root and leaves of the plant were analyzed. The effects 
of salt and mycorrhiza interactions on the N uptakes were statistically significant at the 5% level in 
bulbs. The effects of salt applications were found significant at 1% level for all nutrients uptakes of roots 
except Cu uptake (5%). The effects of interactions among salt and mycorrhiza were found significant 
at 5% level for P, Ca and Mn uptakes and at 1% level for Mg, Fe and Cu uptakes of leaves statistically. 
Increasing doses of sodium chloride had statistically negative effects on nutrient uptakes of different 
organs except Na and K uptakes of bulbs. Mycorrhiza applications generally increased nutrient uptakes 
of daffodil’s roots and leaves under salinity conditions. The interactions between salt and mycorrhiza 
were significant for N in bulbs, for N, P and Fe in roots and for P, Ca, Mg, Fe, Mn and Cu in leaves. 
The decreases in these nutrients uptakes by 68 mmol NaCl applications were lower in mycorrhiza 
applications than those in non mycorrhiza applications.
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Introduction

Soil salinity, especially in arid and semi-arid regions 
that restrict plant growth and production is a worldwide 
problem [1]. About 20% global croplands have become 
less productive or uncultivable wastelands caused by soil 
salinization [2]. Therefore the researchers have given 
importance to these serious environmental problems 
in the last decade. Salinity is of concern because of its 
detrimental effect on plant growth, nutritional balance, 
and plant and flower marketable quality, including visual 
injury, flower distortion and reduced stem length [3-5].

The deterious effects of salinity on plant growth are 
associated with low osmotic potential of soil solution, 
nutrient disorders, specific ion effects or a combination 
of all those factors [6, 7]. Due to the increase in green 
areas in the urban environment, the demand for water 
supply is increasing [8, 9]. As demand for water 
continues to rise in agricultural, urban, industrial, 
environmental and recreational areas, shortages of 
quality water have become a concern in many regions 
[5, 10]. Such as recycled water, treated municipal 
wastewater and brackish groundwater used due to water 
scarcity alternative water sources generally contain 
higher levels of salt [11]. Salinity stress in ornamental 
plant cultivation draws attention worldwide. The salinity 
tolerance of plants is a polygenic character governed 
by many genetic factors [12, 13]. The effect of salt 
on ornamental value is an important criterion when 
searching for salinity-tolerant species and cultivars [14].

Arbuscular mycorrhizal fungi are common 
microorganisms that can form a symbiotic relationship 
with the roots of most terrestrial plants. Root-infected 
arbuscular mycorrhizal fungi (AMF) improve plant 
growth through uptake of soil nutrients via extra 
matrix hyphae. Furthermore, complementary effect 
of arbuscular mycorrhizal fungi, as an alternative for 
reducing fertilizer need of major crop species were 
reported [15]. AMF can form root interrelations in 
more than 80% of terrestrial plants worldwide [16]. This 
relationship improves plant growth and resistance to 
multiple abiotic stressors, including high temperature, 
cold, drought, and salinity stress [17-22]. Ornamental 
plants (herbaceous-woody) vary considerably in terms 
of degree salt tolerance [23]. Mycorrhizal symbiosis has 
been recognized as a plant biofertilizer and bioprotectant 
protecting it from environmental stresses such as 
drought and salinity [24], improving product [25]. The 
importance of arbuscular mycorrhiza against salinity 
should be considered in landscape studies [9].

Cut flowers are an important branch of the floriculture 
industry [26-28]. Narcissus is one of the cut flowers 
grown worldwide for its medicinal and ornamental 
values. The Narcissus species are mostly native to the 
Mediterranean region, although a few species are found 
from Central Asia to China [29]. Narcissus tazetta (L.) 
belonging to the Amaryllidaceae family is used as a cut 
flower in landscaping and cultivation. It has as much 
economic value as an ornamental bulbous plant.

The aim of this study was to determine the effect 
of mycorrhiza on the macro and micro nutrient uptakes 
in the bulbs, roots and leaves of Narcissus tazetta (L.) 
under saline conditions.

Experimental  

The study was conducted with bulbs of Narcissus 
tazetta (L.) and completely randomized factorial design 
with three application so that each replication included 
five pots. In the experiment, different salt concentrations 
were applied with mycorrhiza (M+) (Glomus intraradices 
NC Schenck & GS Sm.) and without mycorrhiza (M-) 
planting soil. G. intraradices mycorrhizal fungus was 
mixed at 7.7% percentage to experimental soil. Bulbs 
were planted into 6 cm diameter plastic pots having 3 kg 
soil after one week following mycorrhizal inoculation. 
N:P:K: ratio of chemical fertilizers were applied so that 
6:12:6 in pots. Soil properties of experimental soil were 
determined using the standard analyses methods [30]. 
Some physical and chemical properties of experimental 
soil were given in Table 1.

Physical and chemical properties of experimental 
soil had loamy texture, non-saline, slightly alkaline, low 
in organic matter, insufficient in phosphorus and zinc 
contents sufficient in calcium, magnesium, manganese 
and copper contents (Table 1).

Ten days after planting Narcissus tazetta plant was 
treated with sodium chloride (NaCl) at three different 
concentrations such as salt-free (S0), 34 mmol (S1)  
and 68 mmol (S2) in mediums with mycorrhiza (M+)  
and without mycorrhiza (M-). Because of the 
development of the bulb root system, until the first 
leaves emergence (36 days) all pots were left in 10ºC 
below the temperature of the cold laboratory, and 
then were taken to a climate chamber at 20-23ºC 
temperature. The nutrient uptakes were analyzed in 
dried and grinded leaf, bulb and root samples according 
to the methods reported by [31]. Na, Fe, Mn, Zn, Cu K, 
Ca and Mg uptakes were determined by using atomic 
absorption spectrophotometers. N and P uptakes 
content were analyzed by using Kjeldahl method and 
spectrophotometric method respectively. Statistical 
analyses of the data were done with MINITAB 14 
program.

Results and Discussion

The variance analyses results belong the effects of 
mycorrhiza applications and salinity on plant nutrient 
uptakes of bulb, root and leaf are given in Table 2,  
Table 3, and Table 4.

The salt applications had significant effects on 
K and Na uptakes of bulbs at 5% and 1% levels 
respectively. The effects of mycorrhiza applications 
on macro and micro nutrient uptakes of bulbs were 
found non-significant statistically. The effects of salt 
and mycorrhiza interactions on the N uptakes were 
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statistically significant at the 5% level in bulbs (Table 2).  
The effects of salt applications were found significant 

at 1% level for all nutrients uptakes of roots except Cu 
uptake. The Cu uptake means of roots were affected by 
salt applications at 5% significance level. Mycorrhiza 
applications had a statistically significant effect on all 
nutrient uptakes except Na and Mn at the level of 1% 
and for Mg at the level of 5%.

The effects of salt and mycorrhiza interactions  
on the Fe uptake was statistically significant at the 1% 
level and were significant at the 5% level for N and P 
uptakes of roots (Table 3).

All nutrient uptakes except Na of leaves were 
significantly affected by salt applications at 1% and 
Na uptakes were affected at 5% significance level. 
Mycorrhiza treatments had a statistically significant 
effect at 1% level on P uptakes and on Cu uptakes at 
5% level. The effects of interactions among salt and 
mycorrhiza were found significant at 5% level for Ca, 
P and Mn uptakes and at 1% level for Mg, Fe and Cu 
uptakes statistically (Table 4).

The effects of salt and mycorrhiza applications on 
nutrient uptakes of Narcissus tazetta’s roots, leaves and 
bulbs were given in Table 5, Table 6 and Table 7.

The increasing salt doses had not significantly 
effects on nutrient uptakes of Narcissus tazetta’s bulbs 
except N, K and Na uptakes. The Na and K uptakes 
increased by increasing salt doses. The lowest K uptake 
was obtained in S0 application as 0.052 mg plant-1 and 
the highest K uptake was obtained in S2 application as 
0.074 mg plant-1. The lowest Na uptake was obtained in 
S0 application as 2.487 mg plant-1, and the highest Na 
uptake was obtained in S2 application as 3.825 mg plant-1. 
N uptakes obtained as 0.127% in S0 applications with 
mycorrhiza were higher than those obtained as 0.080% 
in salt applications without mycorhiza (Table 5).

The salt applications decreased macro and micro 
nutrients uptakes of roots. The lowest N, P, K, Ca, 
Mg, Na, Fe, Mn, Zn and Cu uptakes were determined  
as 0.003 mg plant-1

, 0.043 mg plant-1
, 0,008 mg plant-1, 

0.008 mg plant-1, 0.002 mg plant-1, 0.718 mg plant-1, 
896.443 mg plant-1, 35.813 mg plant-1, 7.695 mg plant-1 

and 16.340 mg plant-1 in S2 applications respectively.  
Mycorrhiza applications increased macro and micro 
nutrients uptakes of roots. These increases did not 
significant for Na and Mn uptakes statistically. The 
interactions between salt and mycorrhiza significantly 
effected N, P and Fe uptakes of roots. The decreases 

Table 1. Properties of the experiment soil.

Texture pH Salinity Lime OM P K Ca Mg Fe Mn Zn Cu

µS cm-1 % % mg kg-1

Loamy 7.81 360.7 3.86 1.32 5.50 298 3034 405 5.58 29.84 0.58 0.81

Table 2. Variance analysis results for nutrient uptakes in bulbs (F values).

Table 3. Variance analysis results for nutrient uptakes in roots (F values).

BULB

Variation Sources df N P K Ca Mg Na Fe Mn Zn Cu

Salt (NaCl) 2 1.52
ns

3.40
ns

4.60
*

0.20
ns

1.02
ns

12.81
**

0.63
ns

0.77
ns

0.27
ns

0.00
ns

Mycorrhiza 1 1.38
ns

0.49
ns

1.30
ns

1.39
ns

0.53
ns

2.94
ns

1.04
ns

0.08
ns

1.10
ns

0.24
ns

Salt*Mycorrhiza 2 6.24
*

3.08
ns

0.29
ns

1.29
ns

0.24
ns

0.97
ns

2.57
ns

0.39
ns

2.78
ns

2.07
ns

*significant at 0.05, **significant at 0.01, ns not significant

ROOT

Variation Sources df N P K Ca Mg Na Fe Mn Zn Cu

Salt (NaCl) 2 140.29
**

74.86
**

16.77
**

15.02
**

13.11
**

16.58
**

11.91
**

8.73
**

27.82
**

5.35
*

Mycorrhiza 1 15.33
**

21.35
**

12.20
**

14.40
**

4.78
*

1.20
ns

23.25
**

4.70
ns

12.62
**

24.88
**

Salt*Mycorrhiza 2 4.44
*

6.15
*

2.11
ns

0.32
ns

0.20
ns

2.46
ns

7.46
**

0.34
ns

1.40
ns

1.07
ns

*significant at 0.05, **significant at 0.01, ns not significant
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in N, P and Fe uptakes by 68 mmol NaCl applications 
were lower in mycorrhiza applications than those in non 
mycorhizza applications (Table 6).

The macro and micro nutrient uptakes of leaves 
decreased by increasing salt doses. The lowest N, 
P, K, Ca, Mg, Na, Fe, Mn, Zn and Cu uptakes were 
determined as 0.058 mg plant-1, 0.597 mg plant-1,  
0.072 mg plant-1, 0.028 mg plant-1, 0.008 mg plant-1,  
2.613 mg plant-1, 261.422 mg plant-1, 48.177 mg plant-1, 
105.540 mg plant-1 and 55.037 mg plant-1 in S2 
applications respectively. The highest nutrient uptake 
means of leaves were obtained in control.

Mycorrhiza applications significantly increased P 
uptake of leaves. The P uptake means were determined 
as 1.422 mg plant-1 and 1.007 mg plant-1 in mycorrhiza 
and non mycorrhiza applications respectively.  
The effects of interactions were found significant for P, 
Mg, Fe, Mn, Ca and Cu uptakes of leaves. The decreases 
in P, Mg, Fe, Mn and Cu by 68 mmol NaCl applications 
were lower in mycorrhiza applications than those in non 
mycorhizza applications (Table 7).   

According to the results, increasing doses of sodium 
chloride had negative effects on nutrient uptakes of 
different organs except Na and K uptakes of bulbs.  
[5] reported that salinity have negative effects on 
plant growth and nutritional balance of ornamental 
plants. Salt stress affects all the major processes, such 
as growth, photosynthesis, protein synthesis, and 
energy and lipid metabolisms [32-34]. [3] reported that 
excessive concentration of ions, especially Na+ and Cl- 

may limit the uptake of other ions. [35] in carnation 
(Dianthus caryophyllus L.)  and gerbera (Gerbera 
jamesonii L.), [36] in Limonium species determined 
that increased level of salinity inhibits water uptake 
and crop nutritional elements from soil via roots. The 
most common consequences of salinity stress on plants 
are the reduction of nutrient ions, especially potassium 
content [37].  In this study, the K uptake of roots, and 
leaves decreased significantly while K uptake increased 
significantly in bulbs by increasing NaCl doses.  
It was reported that salinity has also different effects on 
plant organs. Plants are affected in a different way by 
amount and kind of salt depending on their growth and 
development stage. For example, plant leaves against 
salinity more sensitive than plant roots [38]. Similarly 

in this study Na and K uptakes of bulbs increased 
by increasing salt doses. The decreases in the K+ 
concentrations of the roots and shoots by the increase 
in salinity stress were reported by [39]. They declared 
that The K+ concentration in the roots and shoots 
significantly decreased depending on the increase in 
salinity stress in Tagetes erecta L. ‘Sumo orange’.

Several researchers have reported that Na and Cl 
can affect the uptake of nutrients by competing with 
nutrients or by affecting the ion permeability of the 
membrane. Increasing salinity can lead a decrease in N, 
P, K and Ca uptakes in most plants [40-42]. [39] declared 
that decreases in the concentration of Cu and Zn in 
the roots and Mn and Fe in the shoots were significant 
depend on salinity degree. 

Mycorrhiza applications generally increased 
nutrient uptakes of daffodil’s roots. These increases 
were significant for P, K, Ca, Mg, Fe and Zn. P uptake 
of leaves also increased significantly with mycorrhiza 
applications. Several researchers reported that root 
colonization with arbuscular mycorrhizal fungi (AMF) 
have enhanced the uptake of especially P, N, and other 
nutrients [16, 43, 44, 45].

Enhancement of plant P uptake by AMF has been 
reported [46-50] and has been recognized as one of the 
main reasons for the improvement of growth in salt-
affected plants colonized by AMF [51]. [52] declared that 
hydrolysis of organic P as a result of secretion of alkaline 
phosphate compounds by arbuscular mycorrhizal fungi 
leads to higher plant productivity under P-deficient 
conditions. [53] reported that mycorrhizal association 
enhances plant growth and productivity by increasing 
nutrient element uptake. Arbuscular mycorrhizal fungi 
are common microorganisms that can form a symbiotic 
relationship with the roots of most terrestrial plants. 
Root-infected arbuscular mycorrhizal fungi (AMF) 
improve plant growth through uptake of soil nutrients 
via extra matrix hyphae [15, 54]. These extra-radical 
hyphae act as absorbent structures for mineral elements 
and water. Since radical hyphae can extend several 
centimes from the roots can effectively bridge over the 
nutrient depletion zone around roots and can absorb 
inert elements from the bulk soil [15, 55]. Arbuscules 
are the structures, where metabolites exchanges take 
place between the fungus and host cytoplasm [56-62].

Table 4. Variance analysis results for nutrient uptakes in leaf (F values).

LEAF

Variation Sources df N P K Ca Mg Na Fe Mn Zn Cu

Salt (NaCl) 2 46.63
**

37.58
**

34.86
**

12.29
**

52.70
** 5.61* 45.90

**
22.16

**
37.41

**
20.23

**

Mycorrhiza 1 2.09 
ns

11.53
**

0.58 
ns

0.53 
ns

0.01 
ns

0.16 
ns

1.30 
ns

0.28 
ns

0.81 
ns

7.47
*

Salt*Mycorrhiza 2 3.29 
ns

5.09
*

3.76 
ns

4.52
*

8.96 
**

1.93 
ns

7.48
**

5.89
*

2.54 
ns

14.79
**

*significant at 0.05, **significant at 0.01, ns not significant
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were lower in mycorrhiza applications than those in non 
mycorrhiza applications.

It was reported that under salinity stress conditions, 
AMF inoculated plants can improve adverse effects 

The interactions between salt and mycorrhiza were 
significant for N in bulbs, for P and Fe in roots and for 
P, Ca, Mg, Fe, Mn and Cu in leaves. The decreases in 
these nutrients uptakes by 68 mmol NaCl applications 

Table 5. Effects of salt and mycorrhiza applications on nutrient uptakes of Narcissus tazetta’s bulbs and Duncan differentiation groups 
among means.

BULB

Nutrient Mycorrhiza Salinity

S0
(control)

S1
(34 mmol NaCl)

S2
(68 mmol NaCl) Mean

N (mg plant-1)

+M 0.127 a* 0.117 ab 0.110 ab 0.118

-M 0.080 b 0.120 ab 0.126 a 0.109

Mean 0.104 0.118 0.118

P (mg plant-1)

+M 1.930 1.520 2.563 2.004

- M 1.477 2.080 2.033 1.863

Mean 1.703 1.800 2.298

K (mg plant-1)

+M 0.058 0.063 0.078 0.067

- M 0.047 0.063 0.070 0.060

Mean 0.052 b 0.063 ab 0.074 a*

Ca (mg plant-1)

+M 0.051 0.046 0.046 0.048

- M 0.036 0.042 0.049 0.042

Mean 0.044 0.044 0.047

Mg (mg plant-1)

+M 0.015 0.012 0.014 0.014

- M 0.012 0.011 0.014 0.012

Mean 0.014 0.011 0.014

Na (mg plant-1)

+M 2.513 2.787 3.550 2.950

- M 2.460 3.403 4.100 3.321

Mean 2.487 c** 3.095 b 3.825 a

Fe (mg plant-1)

+M 152.720 127.943 138.900 139.854

- M 117.253 182.223 171.720 157.066

Mean 134.987 155.083 155.310

Mn (mg plant-1)

+M 72.503 66.617 76.682 71.934

- M 63.370 70.737 76.347 70.151

Mean 67.937 68.677 76.514

Zn (mg plant-1)

+M 183.400 193.867 242.613 206.627

- M 235.293 231.843 205.183 224.107

Mean 209.347 212.855 223.898

Cu (mg plant-1)

+M 69.670 85.290 80.583 78.514

- M 90.060 74.273 80.600 81.644

Mean 79.865 79.782 80.592

*,**Means followed by different capital letters, in columns, and followed by different small letters, in lines, differ statistically at 
0.05 and 0.01
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by increasing regulation on ion homeostasis, osmotic 
balance and antioxidant enzyme activity [63,64].  
In addition AMF inoculated plants can ameliorate 
negative effects caused by salinity on photosynthetic 

activity, nutrient acquisition, and water uptake  
[65-68]. The results of this study are in agreement  
with referred similar studies results and literature 
knowledge.

Table 6. Effects of salt and mycorrhiza applications on nutrient uptakes of Narcissus tazetta’s roots and Duncan differentiation groups 
among means.

ROOT

Nutrient Mycorrhiza Salinity

S0
(control)

S1
(34 mmol NaCl)

S2
(68 mmol NaCl) Mean

N (mg plant-1)

+M 0.014 a* 0.007 c 0.004 d 0.008 a**

- M 0.011 b 0.007 c 0.002 d 0.006 b

Mean 0.012 a** 0.007 b 0.003 c

P (mg plant-1)

+M 0.187 a* 0.097 bc 0.063 cd 0.115 a**

- M 0.123 b 0.097 bc 0.023 cd 0.081 b

Mean 0.155 a** 0.097 b 0.043 c

K (mg plant-1)

+M 0.029 0.020 0.013 0.021 a**

- M 0.017 0.019 0.004 0.013 b

Mean 0.023 a** 0.020 a 0.008 b

Ca (mg plant-1)

+M 0.021 0.022 0.011 0.018 a**

- M 0.012 0.016 0.004 0.011 b

Mean 0.017 a** 0.019 a 0.008 b

Mg (mg plant-1)

+M 0.004 0.006 0.003 0.005 a*

- M 0.003 0.006 0.002 0.003 b

Mean 0.003 b** 0.006 a 0.002 b

Na (mg plant-1)

+M 1.810 1.413 0.920 1.381

- M 1.447 1.707 0.517 1.223

Mean 1.628 a** 1.560 a 0.718 b

Fe (mg plant-1)

+M 1754.493 a* 1170.247 a 1376.010 a 1433.583 a**

- M 1248.280 a 1169.730 a 416.877 b 944.962 b

Mean 1501.387 a** 1169.988 b 896.443 c

Mn (mg plant-1)

+M 120.403 113.883 50.207 94.831

- M 72.333 95.260 21.420 63.004

Mean 96.368 a** 104.572 a 35.813 b

Zn (mg plant-1)

+M 28.333 18.693 11.207 19.411 a**

- M 18.920 16.370 4.183 13.158 b

Mean 23.627 a** 17.532 b 7.695 c

Cu (mg plant-1)

+M 36.180 34.143 26.003 32.109 a**

- M 15.360 24.370 6.677 15.469 b

Mean 25.770 a* 29.257 a 16.340 b

*,**Means followed by different capital letters, in columns, and followed by different small letters, in lines, differ statistically at 
0.05 and 0.01
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Today, there are many studies [69-81] that reveal the 
effects of biological fertilization, bacterial and fungal 
inoculations that positively encourage development 
and growth, such as plant resistance, yield and quality 

parameters and uptake of nutrients, instead of chemical 
fertilizers against stress conditions.

In addition to these studies, this study, which 
determined the effect of mycorrhiza on the nutrient 

LEAF

Nutrient Mycorrhiza Salinity

S0
(control)

S1
(34 mmol NaCl)

S2
(68 mmol NaCl) Mean

N (mg plant-1)

+M 0.220 0.131 0.087 0.146

- M 0.199 0.154 0.029 0.127

Mean 0.210 a** 0.142 b 0.058 c

P (mg plant-1)

+M 2.233 a* 1.087 b 0.947 bc 1.422 a*

- M 1.550 ab 1.223 b 0.247 c 1.007 b

Mean 1.892 a** 1.155 b 0.597 c

K (mg plant-1)

+M 0.268 0.151 0.106 0.175

- M 0.243 0.203 0.039 0.161

Mean 0.256 a** 0.177 b 0.072 c

Ca (mg plant-1)

+M 0.069 a 0.057 ab 0.042 ab 0.056

- M 0.080 a 0.094 a 0.013 b 0.062

Mean 0.074 a** 0.075 a 0.028 b

Mg (mg plant-1)

+M 0.030 a 0.015 b 0.011 bc 0.019

- M 0.028 a 0.025 a 0.004 c 0.019

Mean 0.028 a** 0.020 b 0.008 c

Na (mg plant-1)

+M 7.327 4.530 3.633 5.163

- M 5.753 6.917 1.593 4.754

Mean 6.540 a* 5.723 a 2.613 b

Fe (mg plant-1)

+M 753.020 ab 428.717 c 408.950 c 530.229

- M 811.300 a 512.227 bc 113.893 d 479.140

Mean 782.160 a** 470.472 b 261.422 c

Mn (mg plant-1)

+M 120.957 ab 98.760 ab 72.843 bc 97.520

- M 153.627 a 133.850 ab 23.510 c 103.662

Mean 137.292 a 116.305 a 48.177 b

Zn (mg plant-1)

+M 324.053 211.657 146.887 227.532

- M 324.057 238.537 64.193 208.929

Mean 324.055 a** 225.097 b 105.540 c

Cu (mg plant-1)

+M 105.647 bc** 100.840 bc 88.793 bc 98.427 b

- M 240.320 a 159.437 ab 21.280 c 140.346 a**

Mean 172.983 a** 130.138 b 55.037 c

*,**Means followed by different capital letters, in columns, and followed by different small letters, in lines, differ statistically at 
0.05 and 0.01

Table 7. Effects of salt and mycorrhiza applications on nutrient uptakes of Narcissus tazetta’s leaves and Duncan differentiation groups 
among means.
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uptake of Narcissus plant in saline growing conditions, 
provided additional information to the literature.

Conclusions

In this study increasing doses of sodium chloride 
had negative effects on nutrient uptakes of different 
organs except Na and K uptakes of bulbs. Mycorrhiza 
pplications generally increased nutrient uptakes of 
daffodil’s roots and leaves under salinity conditions. 
The interactions between salt and mycorrhiza were 
significant for N in bulbs, for N, P and Fe in roots and 
for P, Ca, Mg, Fe, Mn and Cu in leaves. The decreases 
in these nutrients uptakes by 68 mmol NaCl applications 
were lower in mycorrhiza applications than those in non 
mycorrhiza applications. According to results of this 
study it was thought that mycorrhiza applications can be 
improve adverse effects of salinity on nutrient uptakes 
in Narcissus tazetta. Mychorrhiza applications can be 
useful for growing bulbous ornamental plants under 
salinity conditions.
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